Abstract
The development of heterogeneous electrochemical activity in the welded zones of aluminum alloy 2098-T351 by friction stir welding (FSW) associated with the formation of a near-surface deformed layer (NSDL) upon exposure to an aqueous chloride-containing solution was characterized using scanning electrochemical microscopy (SECM) in potentiometric operation. A solid-contact Mg2+ ion-selective microelectrode allowed in situ monitoring of the corrosion reactions sites for magnesium dissolution from different zones of the FSW weld upon exposure to a chloride-containing aqueous environment. In this way, localized corrosion reactions developing in the galvanically coupled joint/heat affected zones (WJ/HAZ) of the weld were detected and imaged with spatial resolution. The most active domains for local Mg2+ concentrations were associated with the HAZ of the retreating side (RS), and these corresponded to Mg oxidation from the Mg-enriched oxide bands in NSDL.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.