Abstract

The need for constant assessment of river water qualities for both aquatic and other biological survival has emerged a top priority, due to increasing exposure to industrial pollutants. A disposable screen print carbon electrode was modified with a conductive polymer (PANI) and Zn and/or Cu oxides NPs, obtained through bioreduction in citrus peel extracts (lemon and orange), for ultra-sensitive detection of PB2+, in the Crocodile River water sample. The synthesized materials were characterized with Fourier-transform infra-red spectroscopy (FTIR), ultra-violet visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM). The SPC-modified electrodes designated as SPCE/LPE/BiONPs/PANI and SPCE/OPE/BiONPs/PANI were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and eventually deployed in the electrochemical detection of PB2+ in water using square wave voltammetry (SWV) technique. The electrochemical responses of the modified electrodes for both CV and EIS in 0.1 M HCl demonstrated enhanced performance relative to the bare SPCE. A detection and quantification limit of 0.494 ppb and 1.647 were obtained at SPCE/LPE/BiONPs/PANI, respectively, while a detection and quantification limit of 2.79 ppb and 8.91 ppb, respectively, were derived from SPCE/OPE/BiONPs/PANI. The relative standard deviations (RSD) for SPC electrode at a 6.04 µM PB2+ analyte concentration was 4.76% and 0.98% at SPCE/LPE/BiONPs/PANI and SPCE/LPE/BiONPs/PANI, respectively. The effect of copper, zinc, iron, cobalt, nickel, and magnesium on the stripping peaks of PB2+ at SPCE/OPE/BiONPs/PANI, showed no significant change except for cobalt, with about 17.67% peak current drop. The sensors were assessed for possible determination of PB2+ in spiked river water samples. The average percentage recovery and RSD calculated were 94.25% and 3.74% (n = 3) at SPCE/LPE/BiONPs/PANI and, 96.70% and 3.71% (n = 3) at SPCE/OPE/BiONPs/PANI, respectively. Therefore, the fabricated sensor material could be used for environmental assessment of this highly toxic heavy metal in the aquatic system

Highlights

  • Introduction distributed under the terms andWater is essential to living and plays vital roles in countless human activities

  • As noted in the cyclic voltammetry (CV) in the 0.1 M hydrogen chloride (HCl) electrolyte solution, in the previous section, the presence of the nanocomposite on the SPCE surface drastically reduced the Rct values: 175 kΩ (SPCE) to 100 Ω (SPCE/LPE/BiONPs/PANI), equivalent to 99.94% reduction and

  • A common environmental citrus waste peel of lemon and orange were successfully employed in the green synthesis of ZnO and CuO blends to form bioxide of BiONPs in an alkaline medium

Read more

Summary

Introduction

Introduction distributed under the terms andWater is essential to living and plays vital roles in countless human activities. There has been an increasing demand for potable water both for industrial and commercial purpose. Rapid growth in population and attendant industrial growth in developing economies have emerged as key drivers into a global water scarcity. Nanomaterials 2021, 11, 1294 existing population growth rate, by the year 2050, the population of the world is projected to get close to 9 billion and the magnitude of the water crisis will keep rising [1]. It is projected that 3.2% of global deaths could be attributed to unsafe water resulting from poor hygiene and sanitation [6] and four-fifths of the diseases in humans globally are as a result of consumption of contaminated water, acute hygiene deficiency and inadequate sanitary knowledge [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call