Abstract

The analysis of the medium temperature half-cell Ce0.8Gd0.2O1.9|70 wt% La0.6Sr0.4CoO3-δ (LSCO) + 30 wt % Ce0.8Gd0.2O1.9 (CGO) has been made by electrochemical impedance, cyclic voltammetry and chronoamperometry. The shape of complex impedance plots depends on temperature and cathodic polarisation of the electrode. Nyquist (Z′′, Z′-) plots were fitted by equivalent circuit taking into account the electrolyte properties (at very high frequencies), charge transfer process at grain boundaries (at high frequencies), and medium and low frequency O2 reduction process at the cathode surface and inside the porous cathode material. Two different time constants have been obtained for the cathode process, i.e. for electroreduction of oxygen. It was found that the addition of CGO into the cathode material (LSCO) only somewhat decreases the surface catalytic activity but the noticeably higher low-frequency resistance (i.e. mainly diffusion-like mass transfer resistance RD) values at lower temperatures have been calculated. It was found that the mainly bulk diffusion-limited process at T≤773 K deviates toward the kinetically mixed process (diffusion + charge transfer) with increasing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.