Abstract

The Pt/yttria-stabilized cubic zirconia (YSZ) interface exposed to a reactive gas was characterised by solid electrolyte potentiometry and cyclic voltammetry. The catalytic reactions included total combustion of C 3H 8 and C 3H 6 to CO 2 and H 2O as well as NO reduction by C 3H 6 in the presence of O 2 under oxygen-rich and stoichiometric conditions. The solid electrolyte potentiometry as a function of the temperature in C 3H x /O 2 (with x=6 or 8) reflected the catalytic properties of Pt for C 3H x oxidation. In C 3H 6/NO/O 2, the reduction of NO was evidenced below 300 °C. The cyclic voltammetry evidenced the formation of an oxygen chemisorbed layer on the Pt surface under anodic potential. Propane had no effect on this chemisorbed layer, whereas propene weakened significantly the strength of this Pt–O bond. Addition of NO to C 3H 6/O 2 led to the disappearing of this chemisorbed layer. The use of solid electrolyte potentiometry in conjunction with cyclic voltammetry allowed us to determine the surface oxidation state of Pt during the catalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.