Abstract

On the basis of previous theoretical work we present a simple method of chaos control in experiment and simulation using the Belousov−Zhabotinsky (BZ) reaction. The chaos control parameter employed is the sinusoidally modulated electric current (AC) acting on a Pt-working electrode. The experimental chaos control takes place in the well-known low flow rate region of the BZ reaction in a CSTR (continuous flow stirred tank reactor). It was possible to stabilize several unstable periodic orbits (UPO) in the BZ experiment, namely P1, P2, P3, and P4. The chosen model of chemical chaos is the seven-variables model (Montanator) of Györgyi and Field. The stabilized UPO (P3) in the model calculations is compared to the same UPO stabilized by time-delayed feedback method according to Pyragas. In addition we use the continuous time-delayed feedback method to achieve the tracking of the UPO starting in the chaotic range and continuing beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call