Abstract

The electrochemical cell for cerium oxidation and reactor for organic destruction are the most important operation units for the successful working mediated electrochemical oxidation (MEO) process. In this study, electrochemical cells with DSA electrodes of two types, single stack and double stack connected in series, were used. The performances towards the electrochemical generation of Ce(IV) in nitric acid media at 80 °C were studied. The current-voltage curves and cerium electrolysis kinetics showed the dependence on number of cell stacks needed to be connected in series for the destruction of a given quantity of organic pollutant. The presence of an optimum region for Ce(III) oxidation with a contribution of oxygen evolution, especially at low Ce(III) concentration (high conversion ratios), was found. The cells were applied for the Ce(IV) regeneration during the organic destruction. The cell and reactor processes were fitted in a simple model proposed and used to calculate the current needed in terms of Ce(III) oxidation rate and the number of cell stacks required for maintaining Ce(IV)/Ce(III) ratio at the same level during the organic destruction. This consideration was based on the kinetic model previously developed by us for the organic destruction in the MEO process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.