Abstract
Porous and interconnected electrodes based on carbon nanoarchitectures offer comprehensive advantages of large specific surface area and high porosity consequently increasing the specific capacitance of ultracapacitor energy storage systems. Emulsion-templated polymers, PolyHIPEs (Polymerized High Internal Phase Emulsions) are highly porous polymers with a structure of cages interconnected by windows thus provide suitable framework to create such porous carbon nanostructures. Herein, nitrogen enriched porous carbon nanosheets are synthesized by pyrolysis of polymer-silica hybrid PolyHIPE and subsequent silica removal. This nitrogen enriched porous carbon nanosheets when tested as an electrode for ultracapacitor, showed specific capacitance as high as 209 F/g at a current density of 1 A/g in 1 M H2SO4with excellent capacity retention over long cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.