Abstract
Several genera of marine dinoflagellates are known to produce bioactive compounds that affect human health. Among them, Gambierdiscus and Fukuyoa stand out for their ability to produce several toxins, including the potent neurotoxic ciguatoxins (CTXs), which accumulate through the food web. Once fishes contaminated with CTXs are ingested by humans, it can result in an intoxication named ciguatera. Within the two genera, only some species are able to produce toxins, and G. australes and G. excentricus have been highlighted to be the most abundant and toxic. Although the genera Gambierdiscus and Fukuyoa are endemic to tropical areas, their presence in subtropical and temperate regions has been recently recorded. In this work, the combined use of species-specific PCR primers for G. australes and G. excentricus modified with short oligonucleotide tails allowed the development of a multiplex detection system for these two toxin-producing species. Simultaneous detection was achieved using capture probes specific for G. australes and G. excentricus immobilized on maleimide-coated magnetic beads (MBs), separately placed on the working electrodes of a dual electrode array. Additionally, a rapid DNA extraction technique based on a portable bead beater system and MBs was developed, significantly reducing the extraction time (from several hours to 30 min). The developed technique was able to detect as low as 10 cells of both Gambierdiscus species and allowed the first detection of G. excentricus in the Balearic Islands in 8 out of the 12 samples analyzed. Finally, field samples were screened for CTXs with an immunosensor, successfully reporting 13.35 ± 0.5 pg CTX1B equiv. cell−1 in one sample and traces of toxins in 3 out of the 9 samples analyzed. These developments provide rapid and cost-effective strategies for ciguatera risk assessment, with the aim of guaranteeing seafood safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.