Abstract

To increase the loading of glucose oxidase (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid phenylalanine (Phe, F) was utilized for the incorporation of GOx. The synthesized hydrogel displays good biocompatibility and contains a significant number of Fc moieties, which can be considered as an ideal matrix to immobilize enzymes for the preparation of mediator-based biosensors. The hydrogel was studied by scanning electron microscopy, which indicated that it was composed of nanofibers with a diameter of around 50-100 nm and length extended to 1 mm. With the addition of GOx into the hydrogel and by directly dropping the resulting biocomposite onto the electrode surface, a glucose biosensor, that displays good performance due to improved enzyme loading and efficient electron transfer, can be simply constructed. The favorable network structure and good biocompatibility of the hydrogel could effectively avoid enzyme leakage and maintain the bioactivity of the enzymes, which resulted in good stability of the biosensor. The biosensor was utilized for the detection of glucose in blood samples with results comparable to those obtained from the hospital. The hydrogel as a functional component of an amperometric biosensor has implications for future development of biosensors and for clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.