Abstract

Hydrogen evolution is a fundamental reaction for better understanding of electrochemical activity of electrode materials. Amorphous Cu–Zr and Cu–Ti ribbons were produced by melt spinning methods and were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimetry. The electrocatalytic efficiency was evaluated on the basis of electrochemical data obtained from cathodic polarization curves carried out in both acid and basic medium at 25°C. The surfaces of amorphous materials were prepared, before electrochemical measurements, by immersion in HF solutions. The results were compared to those obtained on polycrystalline copper and on untreated ribbons. The HF treatment yielded a porous copper structure with a higher roughness factor which had improved electrocatalytic activity compared with that of polycrystalline copper electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.