Abstract

Electrochemical techniques were used to investigate the behavior of lomustine (CCNU) and its degradation in aqueous solution at a glassy carbon electrode (GCE). The in situ interaction of CCNU and chemically degraded CCNU (cdCCNU) with dsDNA was then investigated in dsDNA incubated solutions, using dsDNA electrochemical biosensors and comet assays. CCNU undergoes electrochemical reduction in two irreversible, diffusion-controlled, and pH-dependent redox processes, each with transfer of two electrons and one proton. At pH ≥ 10.1, the peak potential for the two processes was essentially pH-independent and involved only one electron. A mechanism was proposed for the reduction of CCNU in a neutral medium. In addition, it was found that CCNU underwent spontaneous degradation during incubation in aqueous solution, without the formation of electroactive degradation products. The degradation process was faster in basic media. Moreover, this pro-drug interacted with the DNA. Its metabolite(s) initially caused condensation of the double helix chains, followed by the unwinding of these chains. In addition, free guanine (Gua) was released from the dsDNA and oxidative damage to the DNA by the CCNU metabolite(s) was evidenced from the detection of 8-oxoGua and 2,8-oxoAde. These results were confirmed by the poly(dA)- and poly(dG)-polyhomonucleotide biosensors, which revealed the oxidative damage caused to both bases (guanine and adenine) of the dsDNA by the CCNU metabolite(s). The comet assay indicated breaks in the single strand DNA, complementing the results of the studies using differential pulse voltammetry. Conformational changes of dsDNA caused by CCNU and cdCCNU were confirmed using comet assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.