Abstract

The electrochemical behaviour of Al, Al—In and Al–Ga–In alloys in 0.6 m NaCl solutions with and without Zn2+ was investigated. The study was performed by means of open circuit potential, potentiodynamic polarization, potentiostatic current-time and electrochemical impedance spectroscopy measurements as well as by SEM-EDAX examination. It was found that the Al—In alloy exhibits the highest negative open circuit potential in 0.6 m NaCl and the corrosion resistance of the tested electrodes decreases in the following order: Al > Al–Ga–In > Al—In. The greater activity of the Al—In alloy was interpreted on the basis of the autocatalytic attack by indium. The potentiostatic current–time measurements in Zn2+ containing electrolyte at potentials above the pitting potential revealed that Zn2+ has an insignificant influence on the Al electrode, while it enhances the corrosion of the Al–Ga–In alloy and improves the attack morphology of the Al—In alloy. Furthermore, the impedance spectra recorded under open circuit conditions showed a decrease in the polarization resistance of Al—In and Al–Ga–In alloys in presence of Zn2+ indicating the activating effect of Zn2+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.