Abstract

Electrochemical behaviors of U(VI) in 1-butyl-3-methylimidazolium chloride (C4MimCl) with various water contents investigated by chronopotentiometry and cyclic voltammetry. The electrochemical reduction of U(VI) was identified to follow two processes: a lower valence intermediate U(V) was initially formed at the potential of ca. −0.2 V(vs. Ag wire). Then, further deposition of UO2 was followed at around −0.8 V. Little amount of water (1–4 wt%) in C4MimCl, however, has an effect on the U(VI) reduction by changing the current density of the redox reaction and the diffusion coefficient of U(VI) in C4MimCl. The deposited product by potentiostatic electrolysis on the surface of stainless steel electrode was characterized by the scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) methods. Although the electrodeposited black film was amorphous, the electrochemical reduced product of U(VI) can be still confirmed to be UO2 by XRD after the crystallization of the amorphous deposits at 1,073 K in nitrogen atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call