Abstract

Electrochemical properties of a thin-film nanocomposite “silicon-carbon matrix-tungsten carbide” deposited onto pyroceramics (“sitall”) substrate are studied by potentiodynamic curves and electrochemical impedance spectroscopy. Transfer coefficients in model redox system [Fe(CN)6]3−/4− are measured. With the decreasing of the films’ electrical resistance, their experiment behavior gradually changed from that of “poor conductor” till nearly metal-like one. In particular, the electrode differential capacitance increases, which is explained by the increase in the number of conducting metal-containing clusters in the film bulk and at the film/electrolyte solution interface. Some specific features of the complex-plane plots of impedance spectra are tentatively explained by the adsorption at the nanocomposite surface elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.