Abstract
For biomedical applications the physico-chemical properties of oxide layers, always present in titanium-based materials, are of special interest because the biological system is in direct contact only with these oxides. Using electrochemical impedance spectroscopy and galvanostatic polarization it is shown that the different compositions of c.p.-titanium, Ti6Al4V, and Ti6Al7Nb result in different physico-chemical properties of air formed passive layers and anodic oxide layers. This may have a direct impact on the biocompatibility of these materials. Results of impedance spectroscopy distinctly differ in the flatband potentials as well as in the donor densities of air-formed passive layers with Ti6Al7Nb showing an approximately 50% smaller donor density than the other materials. Anodic galvanostatic polarization results in voltage-charge density curves with distinct differences in the Faraday efficiency epsilon of the oxide formation between Ti6Al7Nb and c.p.-titanium/Ti6Al4V, especially for low current densities. These effects correlate strongly with the donor densities in the air formed passive films of the examined materials. SEM-images of anodic oxide layers show a blister containing surface morphology of the outer part of the oxide layers for all materials. This morphology is probably caused by oxygen evolution, a process which relies on the transfer of electrons through the growing anodic oxide layers and strongly depends on the donor density in the air formed passive layers. Again, the much more pronounced morphology on c.p. titanium/Ti6Al4V agrees with the different donor densities in the air formed passive layers on the materials. These findings correlate with the good biocompatibility of Ti6Al7Nb and suggest that conduction mechanisms, in air formed passive layers and anodic oxide layers, contribute to processes that determine the biocompatibility of these materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of materials science. Materials in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.