Abstract

The charge transfer processes are favored in dual nanofibers composed by TiO2Rutile-Csemigraphitic/Csemigraphitic over other systems such as TiO2Anatase&Rutile-Camorphous/Camorphous and TiO2Rutile-Camorphous, dual and single nanofibers respectively. The study of electrochemical impedance spectroscopy (EIS) shows that the net of nanofibers presented a charge transfer resistance value (Rct) of 3.15Ω. The increased ability of these materials to favor the diffusion of electroactive species in individual nanofibers is that the junction between the n-type semiconductor TiO2 and the semigraphitic material can be of the ohmic kind. Moreover, this observation was supported by cyclic voltammetry (CV) and electrical conductivity studies by two-probe method. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) confirmed the continuity and duality in the morphology of these materials. The effect of heat treatment on crystallinity was evident in the results obtained from the X-Ray Diffraction (XRD) and Selected Area Electron Diffraction (SAED) studies. Due to the electrochemical performance and morphological features of TiO2Rutile-Csemigraphitic/Csemigraphitic dual nanofibers; this novel nanostructured material can be regarded as an excellent candidate for applications such as a base material for electronic devices, photocatalysis, among other similar technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.