Abstract

In recent years, alternating current has been widely used in various fields of chemical and electrochemical technology. When a symmetric alternating current passes through an electrochemical cell, in principle there should be no visible changes, since the product restored to the cathode half-period should be oxidized back to the anodic half-period. However, depending on the conditions of electrolysis, electrode material, etc. a purposeful course of the electrochemical process is possible. The paper shows the distinctive features of electrochemical processes occurring on a silver electrode during electrolysis by industrial alternating current in a solution of sulfuric acid by the method of rational mathematical planning. The optimal conditions for the dissolution of silver are determined by studying the effect of current density at the electrodes, the concentration and temperature of the electrolyte, the duration of the electrolysis and the frequency of the alternating current. It is shown that when polarized with an alternating current of silver in a pair with a titanium electrode, the process of passivation of the silver electrode is eliminated, and the rate of dissolution of the metal increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.