Abstract

The modern iron and steel industry produces large emissions of CO2 annually. Electrolytic reduction of molten slag containing iron oxide at high temperature using an inert oxygen evolving anode is an alternative process to reduce or eliminate the formation of CO2. In order to establish reasonable process parameters of electrolytic method for steel containing Ni, it is necessary to master the electrochemical behavior of Ni + in molten slag. However, investigations on the electrochemical behavior of Ni in molten slag at higher temperatures were very limited, which can probably be attributed to the experimental difficulties associated with the operation of high-temperature electrochemical cells. An electrolytic cell with a controlled oxygen flow and Pt, O2(air)|ZrO2 used as reference electrode was constructed integrally through a one-end-closed magnesia partially stabilized ZrO2 solid electrolyte tube. Electrochemical behavior of Ni + on Ir electrode was investigated in SiO2-CaO-MgO-Al2O3 molten slag at 1673 K by means of electrochemical techniques such as cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis. The results show that both diffusion in the molten slag and electromigration in the ZrO2 solid electrolyte for the O are not rate-determining steps of electrochemi*国家自然科学基金项目51174148和武汉科技大学大学生科技创新基金研究项目14ZRA004资助 收到初稿日期: 2015-01-22,收到修改稿日期: 2015-04-27 作者简介:洪川,男, 1990年生,硕士生 DOI: 10.11900/0412.1961.2015.00065 第1001-1009页 pp.1001-1009

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.