Abstract

Electrochemical properties of new electrode material—compact of boron-doped synthetic diamond—is studied for the first time. Cylindrical samples 3.5–4 mm in diameter and 2.5 mm in height were obtained by thermobaric processing of graphite–boron carbide mixtures in the diamond thermodynamic stability region (at the pressure of 8–9 GPa and temperature of ~2500 K). Their electrode behavior is studied using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The cyclic voltammograms of the compact samples showed that their electrode characteristics are similar to those of traditional thin-film diamond electrodes obtained by the chemical vapor deposition (CVD) technique. In particular, they demonstrate rather wide potential window, low background current in indifferent electrolytes, and good reproducibility. It can be concluded that the diamond compacts practically are not inferior to the thin-film CVD-diamond electrodes and can serve as indicator electrodes, e.g., in electroanalysis. At the same time their compact form may be a convenience in the designing of electrolyzers and other electrochemical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.