Abstract

The effect of indium alloying on the corrosion and discharge behaviors of Mg-Al-Zn-Ga alloys is investigated via materials characterization, immersion test and electrochemical methods. The results indicate that indium alloying can effectively modify the distribution of intermetallic phases in Mg matrix via promoting the segregation of Al in the form of Mg17Al12 in matrix. The addition of indium can effectively activate Mg-Al-Zn-Ga alloy evidenced by increased hydrogen evolution volume and weight loss, negative shift of corrosion and discharge potentials, increase of corrosion current density, decrease of polarization resistance and promoted Faradic efficiency. Nonetheless, excessive indium alloying (2.0 wt.%) would strikingly deteriorate the electrochemical performance of Mg-Al-Zn-Ga anode due to the exorbitant active effect. The Mg-6 wt.%Al-3 wt.%Zn-1 wt.%Ga-1 wt.%In in as-cast state with acceptable corrosion rate and desirable discharge performance is a low cost, non-toxic and well-performance magnesium alloy, which is a promising anode materials for seawater-activated batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.