Abstract

The electrochemical behavior of m-nitrosulphonic acid of benzene was studied by polarography, voltammetry at glassy carbon electrode, electrolysis at the controlled potential, and electrolysis in galvanostatic mode. A distinguishing feature of the m-nitrosulphonic acid of benzene electroreduction, as compared with that of aromatic nitro-compounds, both on mercury dropping electrode and glassy carbon electrode, is shown to be a strong dependence of parameters and shape of the polarization curve on the supporting electrolyte solution composition and рН in neutral and alkaline solutions. The two waves observed are bound to the reduction of undissociated m-nitrosulphonic acid of benzene molecule and its anion; the reduction intermediately product is hydroxylaminesulphonic acid of benzene. The wave of its further reduction to m-aminosulfonic acid of benzene is camouflaged by the supporting-electrolyte discharge. Ammoniac-buffered solutions can be recommended for preparative electrosynthesis of m-aminosulfonic acid of benzene because its yield in the electrolysis at nickel cathode in galvanostatic mode in these solutions is as high as 92.8%, with current efficiency of 82.0%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.