Abstract

Gold electrodeposits are prepared in a cyanide-free bath with 5,5′-dimethylhydantoin (DMH) as complexing agent. The electrochemical behavior of the electrodeposition is then investigated together with the influence of additive A (pyridyl-compound) as an additive on the nucleation and growth of gold using electrochemical techniques on gold working electrode at different temperatures. Cyclic voltammogram consists of a single cathodic reduction wave at −0.62 V which corresponds to the reduction of Au(III) to Au without anodic oxidation wave observed. The diffusion coefficient of Au(III) in the bath is found to be ∼10 −6 cm 2/s and the energy of activation (43 kJ/mol) is deduced from the cyclic voltammograms at different temperatures. The nucleation and growth of gold on gold working electrode is investigated by chronoamperometry. The progressive nucleation mechanism is found for gold deposition using Scharifker–Hills’ model with three-dimensional (3D) diffusion-controlled growth nucleation. The introduction of the additive A does not influence this mechanism. The gold electrodeposits are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and cathodic polarization measurements. Experimental results indicate that additive A increases the cathodic polarization of bath, refines the grains of electrodeposit and changes the preferred orientation of electrodeposit from [1 1 1] direction to [2 0 0] direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call