Abstract

Nanoporous Pt based nanoparticles (NP’s) are promising fuel cell catalysts due to their high surface area and increased electrocatalytic activity toward the ORR. In this work a direct double-pulse electrodeposition procedure at room temperature is applied to obtain dendritic Pt structures (89 nm diameter) with a high level of porosity (ca. 25%) and nanopores of 2 nm protruding until the center of the NP’s. The particle morphology is characterized using aberration-corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and electron tomography (ET) combined with field emission scanning electron microscopy (FESEM) and macroscopic electrochemical measurements to assess their activity and stability toward the ORR. Macroscopic determination of the active surface area through hydrogen UPD measurements in combination with FESEM and ET showed that a considerable amount of the active sites inside the pores of the low overpotential NP’s were accessible to oxygen species. As a r...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call