Abstract

The electrochemical behavior of Cu–Ni alloys in acidic chloride medium was investigated. Commercial Cu–Ni alloys were investigated using potentiodynamic techniques, complemented by electrochemical impedance spectroscopy. The influence of alloy composition, chloride ion concentration and immersion time on the electrochemical response of the alloys was analyzed. Results of present investigations with pure metals (Cu and Ni) are also considered in this paper for the sake of comparison. Potentiodynamic measurements reveal that the increase in nickel content decreases the corrosion rate of the alloy and when the nickel content exceeds 30%, an increase in the corrosion rate was recorded. Also, the corrosion current density increases with increasing the concentration of chloride ions up to 0.6 M. The experimental impedance data were fitted to an equivalent circuit model representing the electrode/electrolyte interface. The relevance of the proposed model to the corrosion/passivation phenomena occurring at the electrode/solution interface was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.