Abstract

The cast structures influencing the electrochemical corrosion behavior of Co-Cr and Ni-Cr dental alloys were studied using potentiodynamic polarization and AC impedance in 0.9% (mass fraction) NaCl solution at (37±1) °C. The phase and microstructure of the alloys that were fabricated using two different casting methods viz. centrifugal casting and high frequency induction casting, were examined using X-ray diffraction analysis, scanning electron microscopy and energy dispersive spectroscopy. The roles of alloying elements and the passive film homogeneity on the corrosion resistance of Co-Cr-Mo and Ni-Cr-Mo dental cast alloys were reviewed. The results of electrochemical study show that the dependence of corrosion resistance on the microstructure associated with the casting methods is marginal. The Co-Cr alloy exhibits more desirable corrosion resistance properties than the Ni-Cr alloy. There is severe preferential dissolution of Ni-rich, Cr and Mo depleted zones in the Ni-Cr alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call