Abstract

Hybrid nanocomposites based on poly(3,6-di(3-aminophenyl)amino-2,5-dichloro-1,4-benzoquinone) and single-walled carbon nanotubes were obtained under monomer polymerization conditions in concentrated formic acid under the action of benzoyl peroxide in the presence of single-walled carbon nanotubes. The electrochemical behavior in an aprotic lithium electrolyte of composite electrodes having the form of strips of anodized graphite foil having on its surface an active layer of a stable suspension of the nanocomposite in formic acid was examined in the absence of any binding and electrically conducting additives. The specific electrochemical capacitance of the coating reaches a value of 500 F g−1 at a charge-discharge current of 1.5 mA cm−2 in an inorganic electrolyte composed of 1 M LiClO4 in propylene carbonate. It was found that the Faraday pseudo-capacitance makes an insignificant contribution to the electrochemical capacitance of composite electrodes, which is mostly determined by the charging of an electric double layer. The nanocomposite coatings are characterized by high stability of their electrochemical characteristics at a coulomb efficiency of 97–100%. The fall of the capacitance upon prolonged cycling (>300 cycles) does not exceed 4%. The electrochemical characteristics of electrodes on friable substrates of anodized graphite foil strongly surpass those for electrodes obtained on nickel or rolled graphite foil as substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.