Abstract

The present study is focused on tailoring the morphology of TiO2 nanotubes obtained on Ti6Al7Nb alloy and evaluating their electrochemical behavior in simulated body fluid. The presence of the α and β phases on the Ti6Al7Nb alloy leads to a two‐scale organization of the nanotubes on the samples – which in turn affects the electrochemical stability. Furthermore, five different types of TiO2 nanotubes were obtained in various electrolytes (e.g. Generation I, a mixture of Generation II and Generation III, Generation III). Electrochemical behavior analysis of all obtained nanotubes morphologies was composed of Tafel plots, cyclic voltammetry and electrochemical impedance spectroscopy and was correlated with morphology data obtained from SEM (nanotubes diameters from top‐view and nanotube length from cross‐section view). The electrochemical results showed that morphological modifications of the Ti6Al7Nb alloy's surface by electrochemical anodizing have induced changes to the electrochemical behavior of the material, evident in the corrosion rates. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.