Abstract

Abstract Electrochemical copolymerization of selenophene and thiophene was performed at a constant electrode potential. The obtained homopolymer films and copolymers were studied and characterized with cyclic voltammetry and conductivity measurements, from which conductivity values around 13.35 S · cm-1 were determined. The influence of the applied electropolymerization potential and the monomer feed ratio of selenophene and thiophene on the copolymers properties was investigated. The obtained copolymers showed good stability of the redox activity in an acetonitrile-based electrolyte solution. At higher polymerization potentials and at higher concentrations of thiophene in the feed, more thiophene units were incorporated into the copolymer chain. The conductivities of the copolymers were between those of homopolymers, implying that oxidation of both monomers was possible and the copolymer chains might accordingly be composed of both selenophene and thiophene units.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.