Abstract

<h2>Summary</h2> Aziridines are useful synthetic building blocks, widely employed for the preparation of various nitrogen-containing derivatives. As the current methods require the use of prefunctionalized amines, the development of a synthetic strategy toward aziridines that can establish the union of alkenes and amines would be of great synthetic value. Herein, we report an electrochemical approach, which realizes this concept via an oxidative coupling between alkenes and primary alkylamines. The reaction is carried out in an electrochemical flow reactor leading to short reaction/residence times (5 min), high yields, and broad scope. At the cathode, hydrogen is generated, which can be used in a second reactor to reduce the aziridine, yielding the corresponding hydroaminated product. Mechanistic investigations and DFT calculations revealed that the alkene is first anodically oxidized and subsequently reacted with the amine coupling partner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.