Abstract

The electrochemical assembly of [Ru(bpy)2tatp]2+ (where bpy = 2,2′-bipyridine, tatp = 1,4,8,9-tetra-aza-triphenylene) on the multi-walled carbon nanotubes-modified glassy carbon electrode (MWNTs/GC) in the presence of anionic and cationic surfactants has been investigated. A diffusion-controlled wave and three prewaves are exhibited on the differential pulse voltammogram of [Ru(bpy)2tatp]2+. The formal potential of the prewaves is found to be much negative than that of the diffusion-controlled wave. An appropriate amount of anionic surfactants including dihexadecyl phosphate (DHP) and deoxyribonucleic acid (DNA) can prompt the assembly of [Ru(bpy)2tatp]2+ on the MWNTs/GC electrode by using the method of repetitive voltammetric sweeping. In contrast, cationic surfactant such as hexadecyl trismethyl ammonium chrolide (HTAC) dispersed on the MWNTs surface is found to inhibit the assembly of [Ru(bpy)2tatp]2+. Meanwhile, the assembled principle of [Ru(bpy)2tatp]2+ on the MWNTs/GC electrode with the participation of surfactants is discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call