Abstract

In this work, an implantable and minimally invasive micro-aptasensor for adenosine monitoring in vivo, based on flexible integrated electrodes, was developed. Firstly the sensor was made by the modification of a needle-type electrode with reduced graphene oxide and gold nanoclusters (rGO-AuNCs) using two-step electrodeposition. Secondly Sulfhydryl-terminated capture probe (ssDNA1) was immobilized on rGO-AuNCs modified electrode surface by self-assembly, and then it was hybridized with adenosine aptamer (ssDNA2). Lastly methylene blue (MB) as an electrochemical indicator was adsorbed on the aptamer through specific interaction of MB with guanine base. The peak current of MB decreased linearly with increasing adenosine concentration due to the formation of aptamer-adenosine complex and displacement of the aptamer from the modified electrode surface. The sensor showed a low detection limit of 0.1 nM with signal-to-noise ratio equal to 3 as well as a wide linear response range (0.1 nM-1 mM) in vitro. Also, a high selectivity was demonstrated for adenosine in relation to uridine, guanosine, and cytidine. Experiments in vivo demonstrated fast responses for a range of adenosine concentrations. This work demonstrates a promising path for implantable devices for the determination of biomolecules in vivo, thus allowing for health tests, detection of infectious diseases, and other medical conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call