Abstract

In this study, cobalt nanoparticles (CoNPs) were synthesized and cobalt nanoparticles modified glassy carbon electrode (CoNPs/GCE) was prepared by drop coating the nanoparticles on glassy carbon electrode. After preparing polypyrrole modified glassy carbon electrode (PPy/GCE) using electropolymerization of pyrrole in LiClO4 solution, cobalt nanoparticles-polypyrrole composite modified glassy carbon electrode (CoNPs/PPy/GCE) was fabricated by drop coating the CoNPs on the PPy/GCE. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, FTIR spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to study the morphological structure and electrochemical behavior of the sensors. The results demonstrated that PPy chains interacted with CoNPs through donor-acceptor bonds. Among all the electrodes, CoNPs/PPy/GCE exhibited highest electroactive surface area and lowest electron transfer resistance towards phoxim. Under the optimal conditions, the sensor showed linear relationship between the reduction peak current and the concentration of phoxim in the range of 0.025 μM–12 μM with the detection limit as 4.5 nM. Besides, the composite electrode demonstrated excellent reproducibility, good stability and selectivity towards the possible interfering substances. All of these properties made CoNPs/PPy/GCE a suitable electrochemical sensor for the electrochemical determination of phoxim in water samples using square wave voltammetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.