Abstract

Voltammograms (polarograms) obtained from solutions of cobalt and nickel containing dimethylglyoxime (dmgH(2)) are widely used for the trace determination of these metals. Detailed electrochemical and spectroscopic studies on the reduction process observed in the analytically important ammonia buffer media at mercury dropping, hanging, and pool electrodes are all consistent with an overall 10-electron reduction process, in which both the dmgH(2) ligand and cobalt ions are reduced in the adsorbed state: Co(II) + 2dmgH(2) ⇌ (solution) [Co(II)(dmgH)(2)] + 2H(+); [Co(II)(dmgH)(2)] + Hg ⇌ (electrode) [Co(II)(dmgH)(2)](ads)Hg; and [Co(II)(dmgH)(2)](ads)Hg + 10e(-) + 10H(+) → Co(Hg) + 2[2,3-bis(hydroxylamino)butane]. The limited solubility of the nickel complex in aqueous media restricts the range of studies that can be undertaken with this system, but an analogous mechanism is believed to occur. Low-temperature voltammetric studies in dichloromethane at a frozen hanging mercury drop electrode and in situ electron spin resonance electrochemical measurements on more soluble analogues of the dimethylglyoxime complexes are consistent with an initial one-electron reduction step being available in the absence of water. Deliberate addition of water to acetone solutions enables the influence of the aqueous environment on voltammograms and polarograms to be examined. The results of the present study are compared with the wide range of mechanisms proposed in other studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.