Abstract

The corrosion behaviour, transport properties and thermal stability of epoxy coatings electrodeposited on steel and steel modified by Zn–Co alloys were investigated during exposure to 3% NaCl solution. The electrochemical impedance spectroscopy (EIS), gravimetric liquid sorption measurements and thermogravimetric analysis (TGA) were used. Zn–Co alloys were electrodeposited on steel from chloride and sulphate baths, by different current densities. From the time dependence of pore resistance and coating capacitance of epoxy coating, diffusion coefficient of water through epoxy coating and thermal stability it was shown that Zn–Co sublayer obtained from chloride solution significantly improves the corrosion stability of the protective system based on epoxy coating. Almost unchanged values of pore resistance were obtained over the long period of exposure time, indicating the great stability of this protective system, due to the existence of a passive layer consisting of basic salts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.