Abstract

In the present work we show the impact of nanotubes (NTs) geometry of titania utilized as a substrate in organic-inorganic systems acting as a p-n junction on efficient conversion of radiation energy into electrochemical energy. The electrolytic bath composition and electrolysis conditions were controlled in order to obtain TiO2NTs of various geometry as a result of electrochemical oxidation of titanium foil. The electrode material was characterized using scanning electron microscopy, Raman and UV–vis spectroscopies in order to investigate their morphology, crystallinity and absorbance ability, respectively. According to SEM inspection, the electrolyte bath composition (water content) and duration of electrolysis significantly affects TiO2NTs morphology, namely the internal diameter and the layer thickness. The TiO2NTs electrode/electrolyte interface characterized using electrochemical impedance spectroscopy (EIS) exhibits varied impedance parameters depending on the outer K2SO4 electrolyte concentration (in the range of: 0.01–0.2 M) as the electric charge distribution at the interface is concentration dependent. The series of hydrogenated titania substrates were electrochemically modified by the conducting polymer: poly(3,4-ethylenedioxytiophene) doped with polystyrene sulphonate (pEDOT:PSS) thin film. The optimal geometry of titania was determined based on the photocurrent density recorded for the composite material (TiO2NTs/pEDOT:PSS). The most photoactive organic inorganic junction is composed of titania tubes of 2.5 µm length, the outer diameter equal to 205 nm giving the real surface area equal to 49.9 cm2 per 1 cm2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.