Abstract

The present study deals with the synthesis, characterization, and testing of tantalum nitride- tantalum oxynitride (Ta3N5-TaON) coupled organic polymers (poly (3,4-ethylene dioxythiophene)-polyaniline; PEDOT-PANI) for the electrochemical oxidation and dye degradation applications. The ammonolysis followed by chemical oxidation was employed for the formation of Ta3N5-TaON-PEDOT-PANI nanohybrids, and instrumental techniques such as powder XRD, XPS, FESEM, HR TEM, and UV–Vis analysis were used for the investigation of physicochemical properties. Further, the efficiency of formed nanohybrids was evaluated by taking the active electrocatalytic behavior towards mebendazole (MBZ) oxidation and photocatalytic dye (methylene blue and methyl red) degradations under UV–Visible light illumination. From the analysis of the results, the Ta3N5-TaON-PEDOT-PANI nanohybrids showed excellent activity and stability towards MBZ oxidation and photocatalytic dye degradation, i.e., the highest dye degradation efficiency of > 97% was obtained. Also, the MBZ degradation efficiency was continued for>500 min even after the test. Further from the photocatalytic results, a plausible dye degradation mechanism was proposed based on UV–Vis spectra and thereby confirming the potential catalytic oxidation and degradation behavior of Ta3N5-TaON-PEDOT-PANI nanohybrids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.