Abstract

In this research, the electrochemical properties of a stir cast Al-0.65Mg-0.15Sn-0.05Ga (wt.%) alloy as an anode material in 3 wt.% NaCl solution was examined by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The corrosion behavior of the material was also evaluated using self-corrosion rate, hydrogen evolution, open circuit and closed circuit potentials, and anode efficiency measurements. In addition, the microstructure of the material was studied using scanning electron microscopy (SEM) and the intermetallic particles were analyzed by energy dispersive spectrometer (EDS). The results showed that tin inclusions were formed within the grains and along the grain boundaries and the dissolution of aluminum substrate was occurred preferentially around these particles leading to form round pits. The dissolution of alloy was accompanied by hydrogen gas evolution from cathodic tin particles. Polarization measurements showed active behavior with considerably negative corrosion potential value without any passive region. The obtained impedance results showed an increase in the impedance values due to the coverage of anode surface by reaction products during immersion. A sample of the alloy which was subjected to homogenizing annealing at 570 °C showed more active behavior by providing more negative open and closed circuit potential values and improved anode efficiencies at higher impressed currents, but evolved higher amounts of hydrogen compared to the as-cast anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.