Abstract

The present study focuses on the interrelation of microstructure, mechanical properties, and corrosion resistance of Pb-Ag and Pb-Bi casting alloys, which can be used in the manufacture of lead-acid battery components, as potential alternatives to alloys currently used. A water-cooled solidification system is used, in which vertical upward directional solidification is promoted permitting a wide range of microstructures to be investigated. Correlations between microstructural arrays, tensile strengths, and corrosion resistances of Pb-1 wt pct Ag, Pb-2.5 wt pct Ag, Pb-1 wt pct Bi, and Pb-2.5 wt pct Bi alloys are envisaged. It is shown that a compromise between corrosion resistance (represented by the corrosion current density) and mechanical properties (represented by the ultimate tensile strength) can be obtained. Comparisons between specific strengths and mechanical/corrosion ratios are also made. It is also shown that, for microstructures solidified under cooling rates higher than 10 K/s, the Pb-Ag alloys exhibit higher specific strength and mechanical/corrosion ratio. In contrast, for casting processes in which the cooling rates are lower than 5 K/s, the dilute Pb-Bi alloy (i.e., 1 wt pct Bi) is shown to have more appropriate requirements for lead-acid battery components. Comparisons between specific strengths, mechanical/corrosion ratio, and relative weight and cost with Pb-Sn and Pb-Sb alloys are also made.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call