Abstract

ABSTRACT A lightweight AlSiBeTiV high entropy alloy (HEA) powder is synthesized by the ball milling process and is reinforced on SS410 through friction stir processing (FSP). Subsequently, the annealing process is conducted on the processed samples at 450, 600, and 750°C for 120 mins. The grains are refined at 600°C by 23.3% than the processed HEA sample. A higher microhardness of 672 HV is attained on the processed HEA sample annealed at 600°C due to the synergistic effect of FSP and annealing through refined grains. The electrochemical corrosion under a 3.5 wt.% NaCl environment, and the hot corrosion under the salt mixture environments of 75% Na2SO4 +25% NaCl, and 60% Na2SO4 +20% NaCl + 20% V2O5 at 800°C for 50 h are investigated on the processed samples. The microstructure, induced corrosion products, and elemental distribution of the corroded surface of the annealed processed HEA sample are evaluated by morphological analysis. The induced oxidation effect enhances the Cr2O3 and TiO2 films on the corroded surfaces leading to higher corrosion resistance. A high corrosion resistance appears on the annealed processed HEA sample through the formation of a stable passive layer, hindering the pitting corrosion mechanism, grain refinement, and homogeneous distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.