Abstract

The melt spinning technology was used to prepare the Mg2Ni0.6M0.4 (M=Cu, Co) hydrogen storage alloys in order to obtain a nanocrystalline and amorphous structure. The microstructures of the alloys were characterized by XRD, TEM. The effects of the melt spinning on the electrochemical and gaseous hydrogen storage capacities of the alloys were investigated. The results indicate that the as-spun (M=Cu) alloys hold an entire nanocrystalline structure even if a limited spinning rate is applied, while the as-spun (M=Co) alloys display a nanocrystalline and amorphous structure and the amount of the amorphous phase grows evidently with the rising of the spinning rate, suggesting that the substitution of Co for Ni facilitates the glass formation in the Mg2Ni-type alloy. The melt spinning enhances the electrochemical and gaseous hydrogen storage capacities of the alloys dramatically. Simultaneously, it ameliorates the hydriding kinetics of the alloys substantially. As the spinning rate grows from 0 (As-cast was defined as the spinning rate of 0 m/s) to 30 m/s, the discharge capacity increases from 53.3 to 140.4 mAh/g for the (M=Cu) alloy and from 113.3% to 402.5% for the (M=Co) alloy; the gaseous hydrogen desorption capacity ( ) in 100 min augments from 2.29% to 2.87% for the (M=Cu) alloy and from 2.42% to 3.08% for the (M=Co) alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call