Abstract
Abstract Nanostructured phase pure TiO2(B) with microfibrous morphology was synthesized by newly developed protocol employing amorphous TiO2 as a precursor. Compared to traditional syntheses from K2Ti4O9, the new product exhibited better electrochemical performance and stability. Cyclic voltammetry of Li-insertion into the TiO2(B) evidences a pseudocapacitive faradaic process of Li accommodation which is basically different from the diffusion-controlled lithium storage in anatase or rutile. The presence of two pairs of peaks in cyclic voltammogram with formal potentials of ca. 1.5 and 1.6 V is specific for TiO2(B). This enables to use cyclic voltammetry for identification of this phase in a broad palette of TiO2 materials of various origin. The photocatalytic activity of TiO2(B) in a gas phase was evaluated using the total oxidation of propane with oxygen and the photocatalytic reduction of NO to N2 in an oxygen rich gas mixture. For the total oxidation of propane in the gas mixture containing 300 ppm propane and 20% oxygen, the reaction rates per 1 m2/g of the BET surface area of the catalyst for TiO2(B) prepared by our protocol and Hombifine N (anatase, SBET = 300 m2/g) are comparable. For the photocatalytic NO reduction to N2 in an atmosphere containing 20% oxygen the ratio of quantum yields for TiO2(B) and Hombifine N was found to be 0.08, which is roughly equivalent to the ratio of their BET surface areas (0.09), despite different phase composition of both materials. In comparison with the standard catalyst our material exhibited higher selectivity in the reduction of NO to N2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.