Abstract
The present study aims to understand the microstructural modification affecting the electrochemical and exfoliation corrosion (EXCO) characteristics of aluminum alloy 7010. The alloy was aged for two different tempers, namely peak aging (T6) and retrogression and re-aging (RRA). The standard electrochemical polarization tests and EXCO tests were performed on the treated alloys. The microstructure of the alloy observed under a scanning transmission electron microscope revealed the presence of continuous grain boundary precipitates in T6 alloy. These precipitates were formed discontinuously after RRA treatment. The RRA alloy microstructure resulted in a shift toward positive potential. The exfoliation corrosion depth was reduced to 60–70 μm after RRA treatment, which was measured to be about 250 μm in T6 condition. The resistance toward the exfoliation corrosion was found to be influenced by the enriched Cu content of precipitates on grain boundary after reversion treatment. The results confirm that the RRA-tempered alloy improves both electrochemical corrosion and EXCO resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.