Abstract

Nucleation mechanisms of cobalt on a glassy carbon electrode (gce) from aqueous ammonium sulfate solutions were investigated through the electrochemical techniques of cyclic voltammetry (cv) and chronoamperometry (ca), coupled with atomic force microscopy (AFM) studies. The studied parameters were pH, cobalt concentration, temperature, scanning rate, and deposition potential. It was found that scanning in the cathodic direction produced two peaks, corresponding to cobalt and hydrogen reduction, respectively. Scanning in the anodic direction was characterized by cobalt dissolution, which was interrupted by formation of cobalt hydroxide, causing a second anodic peak. The amperometric study found progressive nucleation mechanisms, in contrast to the instantaneous nucleation mechanisms determined by the AFM study. An explanation for the contradictory nucleation mechanisms shown in the two studies is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.