Abstract

Rechargeable 2032-coin-type cells were produced with Li-powder anodes (i.e., Li-powder electrodes, LPEs) and either Cr-coated lithium trivanadate (Li1+xV3O8, LVO) cathodes or uncoated LVO cathodes. The initial discharge capacity of a cell with an LPE and a Cr-coated LVO cathode (Cellcoated) was 252 mAh g(-1) at a 0.2 C-rate and that of a cell with an LPE and an uncoated LVO cathode (Cellbare) was 223 mAh g(-1). After the 50th cycle, Cellcoated exhibited higher capacity retention (about 89%) than Cellbare (about 78%). Changes in the surface morphology of the Cr-coated LVO cathode were observed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The change in the electrical conductivity of the cell was measured using the impedance analysis. The electrochemical properties of the cells were also evaluated based on the differential capacity curve, voltage profiles, and capacity versus number of cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.