Abstract

An electrochemically active tin telluride (SnTe) decorated graphene oxide (GO) (SnTe@GO) nanocomposite has been synthesized through simple experimental method and used the same for surface modification of glassy carbon electrode, thus developed a new efficient SnTe@GO/GCE which in turn has been demonstrated as a sensor for identification and quantification of nitrite species in water samples. Common analytical techniques are employed and established the physiochemical properties of SnTe@GO nanocomposite. The electrocatalytic activity of SnTe@GO/GCE has been examined towards sensing and quantification of nitrite through Cyclic Voltammetry and Differential Pulse Voltammetry techniques. The obtained results revel that SnTe@GO/GCE exhibited high sensitivity with wide linear range such as 9.8-162 mM and detection limit found to be 0.079 µM. In addition, in order to inspect the real time application of SnTe@GO/GCE, it is also employed and determined the concentration of nitrite in drinking water, pond water and well water samples which are collected from Rayapuram, Muttukadu and Guindy during the specific period. The LOD observed for drinking water collected from Rayapuram, Chennai are 1.63 μM, pond water collected from Muttukadu, Kanchipuram 2.5 μM, and the well water collected from Guindy, Chennai are 1.25 μM, and thus proves that the newly designed SnTe@GO/GCE is an excellent sensor for nitrite species even in real water sample analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.