Abstract

Atomic force microscopy (AFM) that can be simultaneously performed with scanning tunneling microscopy (STM) using metallic tips attached to self-sensing quartz cantilevers (qPlus sensors) has advanced the field of surface science by allowing for unprecedented spatial resolution under ultrahigh vacuum conditions. Performing simultaneous AFM and STM with atomic resolution in an electrochemical cell offers new possibilities to locally image both the vertical layering of the interfacial water and the lateral structure of the electrochemical interfaces. Here, a combined AFM/STM instrument realized with a qPlus sensor and a home-built potentiostat for electrochemical applications is presented. We demonstrate its potential by simultaneously imaging graphite with atomic resolution in acidic electrolytes. Additionally, we show its capability to precisely measure the interfacial solvent layering along the surface normal as a function of the applied potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call