Abstract
Triple-layered boron-containing carbon nanofibers (CNFs) with hollow channels (PPMPB) are fabricated via step-by-step electrospinning for high-performance freestanding supercapacitors. Polyacrylonitrile (PAN)-based CNFs in the first layer are chosen as the support layer material because of their excellent chemical stability and electrospinnability. The well-developed hollow channels provided fast ion diffusion in the second layer of PAN/poly(methyl methacrylate) (PMMA)-based CNFs. The surface boron functional groups constituting the third layer contribute to the pseudo-capacitance. The symmetric supercapacitor of the PPMPB electrodes delivers a maximum specific capacitance of 180 Fg−1 at 1 mAcm−2, a high energy density of 22.38 Whkg−1 at a power density of 400 Wkg−1, and an excellent retention rate of 96% after 10,000 cycles in aqueous solution. The excellent electrochemical performance is attributed to the unique sandwich nanostructure with a three-layer structure, in which the factors representing the electrochemical properties of each layer do not interfere with each other. Therefore, a moderate amount of boron and the high surface area of the triple-layer structured PPMPB can be fully utilized as an excellent conductive network and electroactive sites, which is expected in a high-performance supercapacitor electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.