Abstract

AbstractElectrocatalytic urea synthesis via coupling N2 and CO2 provides an effective route to mitigate energy crisis and close carbon footprint. However, the difficulty on breaking N≡N is the main reason that caused low efficiencies for both electrocatalytic NH3 and urea synthesis, which is the bottleneck restricting their industrial applications. Herein, a new mechanism to overcome the inert of the nitrogen molecule was proposed by elongating N≡N instead of breaking N≡N to realize one‐step C−N coupling in the process for urea production. We constructed a Zn−Mn diatomic catalyst with axial chloride coordination, Zn−Mn sites display high tolerance to CO poisoning and the Faradaic efficiency can even be increased to 63.5 %, which is the highest value that has ever been reported. More importantly, negligible N≡N bond breakage effectively avoids the generation of ammonia as intermediates, therefore, the N‐selectivity in the co‐electrocatalytic system reaches100 % for urea synthesis. The previous cognition that electrocatalysts for urea synthesis must possess ammonia synthesis activity has been broken. Isotope‐labelled measurements and Operando synchrotron‐radiation Fourier transform infrared spectroscopy validate that activation of N−N triple bond and nitrogen fixation activity arise from the one‐step C−N coupling process of CO species with adsorbed N2 molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call