Abstract

The development of electrochemically active ultrafiltration membrane reactors offers promising perspectives to achieve simultaneous separation and degradation of persistent organic pollutants and support triggered self-cleaning of membrane materials upon surface fouling. Here, electro-responsive ultrafiltration membranes were synthesised from drawable carbon nanotubes (CNT) dry-spun as ultra-thin sheets onto preformed carbon nanofibre (CNF) supports to generate a unique class of electrically conductive and flexible ultrafiltration membranes. The pore size of the CNT-based membranes, on the order of ∼ 28 nm, was fine-tuned by controlling the dry layering and orientation of the CNT sheets to manage the membrane selectivity. The CNT-based membranes were used as effective conductive platforms to promote charge transfer during electrocatalytic degradation of acetaminophen, as a model contaminant. The CNT-based membranes, besides offering water permeance up to 2.77 × 103 L.m−2.h−1.bar−1, yielded electrocatalytic kinetic constant up to 46.5 × 10−3 min−1 during combined electrochemical reaction and ultrafiltration process, which is 1.4 to 39 times larger than previously reported values. Such high performance was maintained quite stable even after 8 reuse cycles. These results demonstrate the potential of CNT dry spinning technology for the scalable fabrication of highly permeable, but selective CNT-based membranes with remarkable electrochemical properties towards cost-effective water treatment at an exceptional reaction rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.