Abstract

The selective electrochemical reduction of oxygen (O2) via 3e− pathway for the production of hydroxyl radicals (HO) is a promising alternative to conventional electro-Fenton process. Here, we developed a nitrogen-doped CNT-encapsulated Ni nanoparticle electrocatalyst (Ni@N-CNT) with high O2 reduction selectivity for the generation of HO•via 3e− pathway. Exposed graphitized N on the CNT shell, and Ni nanoparticles encapsulated within the tip of the N-CNT, played a key role in the generation of H2O2 intermediate (*HOOH) via a 2e− oxygen reduction reaction. Meanwhile, those encapsulated Ni nanoparticles at the tip of the N-CNT facilitated the sequential HO• generation by directly decomposing the electrogenerated *H2O2 in a 1e− reduction reaction on the N-CNT shell without inducing Fenton reaction. Improved bisphenol A (BPA) degradation efficiency were observed when compared with conventional batch system (97.5% vs 66.4%). Trials using Ni@N-CNT in a flow-through configuration demonstrated a complete removal of BPA within 30 min (k = 0.12 min−1) with a limited energy consumption of 0.068 kW·h·g−1 TOC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call